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1 Introduction

Accurately tracking housing price trends is a methodologically complex endeavor.
Indeed, relying solely on year-to-year price means, for instance, would not provide
a satisfactory estimate, because houses are a di!erentiated good, and thus the
characteristics of houses which are sold vary from one year to the next. Conse-
quently the evolution captured by an average (or by a median, for that matter)
may be entirely due to the di!erences in characteristics of the houses sold in var-
ious years. A typical strategy is to rely on hedonic regressions, for instance by
regressing prices on as long a list of house characteristics as available, as well
as time dummies. The time dummy coe”cient estimates are then price indices.
This specific method has the disadvantage of constraining the implicit prices of
characteristics to be constant over time, but overall, the main drawback of hedonic
method is the richness of the data that it requires. It could always be assumed that
some unobserved characteristic plays a fundamental role in house di!erentiation,
thus leading to incorrect estimates.

Bailey, Muth and Nourse (1963) introduced the repeat sales methodology to
remedy this problem. The central idea is to restrict the data set of house sales
to houses which have been sold at least twice. Their method enables a valid
comparison of house prices from one year to the next, by keeping characteristics
constant. This method was improved later on, mainly by Case and Shiller (1987),
who argued that heteroscedastic shocks on individual house prices should be taken
into account. In this thesis, I review repeat sales indices and introduce a method
to address sample selection bias by adapting Heckman’s (1979) approach to these
indices.

Addressing this sample selection bias is crucial because despite the major ad-
vance represented by the repeat sales method, it imposes a very demanding con-
dition on the data set, namely that the houses be sold at least twice during the
period of observation. This may potentially result in a very distinctive set of
houses, since – as shown in a further section – houses that transact are located in
particular types of neighborhoods. In a nutshell, the repeat sales indices may be
subject to sample selection issues, and may hence be biased. My main focus dur-
ing the internship was thus to correct the repeat sales index for potential sample
selection, by taking advantage of a very rich data set.

2 Modeling housing price dynamics: the repeat

sales approach

This section is devoted to the presentation of the repeat sales method, and its devel-
opments by Case and Shiller (1987, 1991). Bailey, Muth and Nourse assumed that
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between two sales observations of a given house, characteristics remain constant.
This is not realistic, because changes are likely to occur between two transactions,
especially if they are separated by a long time interval. Case and Shiller (1987)
reject this assumption, and propose a solution to put less weight on houses which
have been sold after longer time intervals. Shiller (1991) goes on to distinguish
the estimator from 1987, based on a geometric mean approach, from an estimator
based on an arithmetic mean approach. The latter was adopted by real estate
agencies and financial information firms which publish monthly housing indices,
such as Standard & Poor’s. Thus, to ease comparison between my index computa-
tions and publicly available indices, sections (3) and the following will exclusively
focus on the arithmetic approach.

In section (2.1), I present the general model. Sections (2.2) and (2.3) introduce
the Case-Shiller geometric repeat sales model (GRS) and the arithmetic repeat
sales model (ARS), respectively.

2.1 Model of housing price evolution

Consider house i → I, in period t → !0, T ". The repeat sales approach is based on
the following equation of house price formation since its inception:

pit = pat + eit + nit (1)

where pit denotes the log price of house i in period t and pat is the aggregate
real estate log price index in period t. In Baily, Muth and Nourse’s version, the
only error term was nit, a sale-specific random error with variance ω2

n. Case and
Shiller added eit, a property-specific Gaussian random walk, hence the sum of
previous steps (εis)s=0...t, each assumed to follow a normal distribution with mean
0 and variance ω2

ω . Both nit and eit are assumed i.i.d., cross-sectionally and over
time. The random walk represents potential changes occurring in a property’s
characteristics from one sale to another, or the impact of changes in taste on the
property’ value, as is made more clear in equations (2) and (3).

Equation (1) naturally leads to an expression for the price change of a given
house, from one sale to the next. Indeed, the log ratio of prices for house i sold in
period ti and subsequently in t→i (t

→
i > ti), is

pit→i ↑ piti = pat→i ↑ pati +

t→i∑

k=ti+1

εik + nit→i
↑ niti (2)

Importantly, note that the variance of the errors is time-dependent (one of Case
and Shiller’s contributions is to have accounted for this), and thus, this model
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allows for heteroscedasticity:

V(

t→i∑

k=ti+1

εik + nit→i
↑ niti) = (t→i ↑ ti)ω

2

ω + 2ω2

n (3)

This general framework indirectly defines an aggregate sales price. The purpose
of the estimators is to recover it, and ipso facto to generate a housing price index.

2.2 The Geometric repeat sales estimator

The GRS is none other than the estimator resulting directly from equation (2):
the aggregate sales prices are the parameters of interest, as is illustrated in the
following regression equation

pit→i ↑ piti =
T∑

t=1

(1{t→i = t}↑ 1{ti = t})pat + eit→iti + nit→iti
(4)

where eit→iti and nit→iti
are shorthand for the error terms from equation (2). Corre-

sponding matrices are constructed as suggested by the above equation. Suppose
|I| = n, and each house in I was sold exactly twice during the period of obser-
vation. Let !P denote a vector of length n where entry i is pit→i ↑ piti . Let Z be
an n ↓ T matrix of regressors, where entry zij = 1{t→i = j} ↑ 1{ti = j}; in other
words, entry zij is equal to 1 if house i was sold for the second time in period j,
-1 if it was sold for the first time in period j, and 0 if it wasn’t sold in period j.
Then, equation (4) can be rewritten

!P = Zϑ + ω (5)

where ϑ denotes a vector of length T , which contains the parameters of interest,
i.e. entry t is pat, and ω is an error vector of length n (ignoring for now the
specific decomposition of errors). Then, assuming that individual error terms are
uncorrelated, that they are homoscedastic and with mean 0, the Gauss-Markov
theorem applies to the ordinary least squares estimator ϑ̂GRS = (Z→

Z)↑1
Z

→
!P.

It is worthwhile to consider the normal equations of this regression:
Z

→
!P = Z

→
Zϑ̂GRS. Suppose n = 3 and T = 2, such that the setting is as de-

scribed in table (1).
The two normal equations resulting from this setting are

ϑ̂GRS1 = p̂a1 =
p2,1 + p3,1

2
↑ (p2,2 ↑ p̂a2) + p3,0

2

ϑ̂GRS1 = p̂a2 =
p1,2 + p2,2

2
↑ p1,0 + (p2,1 ↑ p̂a1)

2
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Table 1: Setting of housing sales in a 3 periods and 3 houses-example
i \t 0 1 2
1 p1,0 ⊋ p1,2
2 ⊋ p2,1 p2,2
3 p3,0 p3,1 ⊋

The GRS index for period 1, p̂a1, is the di!erence between the log price average of
all houses sold in period 1 (here houses 2 and 3), and the log price average of the
same houses sold in the base period (i.e. period 0). Crucially, since house 2’s other
sale was not in the base period, but in period 2, its base-period price is inferred
by subtracting p̂a2 from p2,2. Similar observations can be drawn from the formula
for p̂a2. Taking the exponential of these estimates gives geometric averages, thus
justifying the name of this estimator.

Now suppose that the vector of errors is in fact the sum of two error vectors,
in accordance with the general model of price evolution: ω = e+ n. A version
of feasible generalized least squares, proposed by Case and Shiller (1987), can be
applied in this context, so as to take heteroscedasticity into account. Indeed, let
ε denote a vector of length n, where entry i is t→i ↑ ti, and let ω̂2 be the vector of
squared residuals from the OLS regression leading to ϑ̂GRS. Then add two steps
to the previous regression. First regress ω̂2 on ε and 1, a vector with 1 in every
entry: this provides an estimate ω̂2

ω for ω2

ω , and 2ω̂2

n for 2ω2

n, according to the
variance equation (3) ; second, perform a weighted least squares version of the
initial regression, or in other words, the initial regression with every term divided
by the square root of the fitted values obtained in the second step:

pit→i ↑ piti√
(t→i ↑ ti)ω̂2

ω + 2ω̂2
n

=

∑T
t=1

(1{t→i = t}↑ 1{ti = t})pat√
(t→i ↑ ti)ω̂2

ω + 2ω̂2
n

+
ϖitit→i√

(t→i ↑ ti)ω̂2
ω + 2ω̂2

n

2.3 The Arithmetic repeat sales estimator

By analogy with the GRS, the ARS is a means to obtain a comparable aggregate
housing price estimate, in which the log prices are replaced by their levels, and the
estimator modified in order to still control for the change in mix of houses across
time.1 Shiller argues that the ARS index has desirable properties, such as being a
value-weighted index, which is important if price changes di!er with house values,

1
Simply replacing the log prices with their levels, while reproducing identically the GRS

method would be equivalent to taking absolute di!erences in prices, instead of percentage changes

as in the GRS, thus leading to overestimating price increases in years when expensive houses are

sold.
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and facilitating comparison and covariance analyses between housing portfolios
and other assets, which are generally also based on arithmetic means.

The suggested regression equation for the ARS method should be

1{ti = 0}Piti =
T∑

t=1

(1{t→i = t}Pit→i
↑ 1{ti = t}Piti)p

↑1

at + eit→iti + nit→iti
(6)

where Pit is the level price of house i in period t. As in the GRS estimator, t = 0
is the base year, which is why the index pat is only expressed for t > 0 in the
equation. The normal equations will clarify the presence of the index’s reciprocal
instead of the index itself.

However, prices, which are now independent variables, are stochastic variables,
which depend for instance on the buyers’ and sellers’ imperfect appreciation of
housing market price levels on the day of the sale. Hence restricting our method
to regression equation (6) would result in an error in variables problem. One
solution is to rely on the independent variable defined in the GRS equation (4) as
an instrument. Consequently, the ARS estimator can be obtained via a two-stage
least squares procedure, the first stage equation being

T∑

t=1

1{t→i = t}Pit→i
↑ 1{ti = t}Piti =

T∑

t=1

(1{t→i = t}↑ 1{ti = t})ϱt + ui (7)

where ui is an error term, assumed to be uncorrelated with the instrument, and
uncorrelated across houses. Let X be the n↓T matrix of regressands in the above
equation. We have that entry xij = zijPij (where zij is an element of matrix Z as
defined in subsection 2.2): Pij if house i was sold in period j for the second time,
↑Pij if it was sold in period j for the first time, and 0 otherwise. Furthermore,
let y denote a vector of length n, where entry i is 1{ti = 0}Piti . Hence, in matrix
notation, regression equations (6) and (7) become respectively

y = Xϑ + ω (8)

X = Zϱ + u (9)

where ϱ is a T↓T matrix, in which each column is the vector [ϱ1, . . . , ϱT ]↔, and u is
a vector of errors. Since X and Z have the same dimensions, the ARS estimator is
just identified, and can thus be expressed as an IV estimator: ϑ̂ARS = (Z→

X)↑1
Z

→
y.

If p limZ
→
u/n = 0 and p limZ

→
X/n is non-singular, then this estimator is consis-

tent.
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Consider again the example from table (1). This time, the normal equations,
Z

→
y = Z

→
Xϑ̂ARS, are

ϑ̂↑1

ARS1
= p̂a1 =

P2,1 + P3,1

P2,2p̂
↑1

a2 + P3,0

ϑ̂↑1

ARS2
= p̂a2 =

P1,2 + P2,2

P1,0 + P2,1p̂
↑1

a1

This estimator is arithmetic, because its expression for period t is the ratio of price
averages for the houses sold in t, to their – potentially corrected – price average in
the base period (to see this, divide both the numerator and denominator by the
number of houses sold in t, in the right hand side of the normal equations).

Just as for the GRS estimator, heteroscedasticity can be corrected with a
weighted least squares procedure, where the weights are the square root of the
fitted values resulting from the regression of squared residuals ω̂2 on a vector of
ones and time spells between two sales.

3 Accounting for selection in the repeat sales ap-

proach

The repeat sales approach provides methods to capture housing price variations
while accounting for the intrinsic heterogeneity of houses, by convincingly keeping
characteristics constant when prices are compared. However, it may be safely ob-
jected – and evidence for this is given in section (4) – that house heterogeneity not
only impacts price di!erences and variations. It also is a key determinant of house
sale. The repeat sales approach does not address this issue, and requires houses
in the sample to have been sold at least twice during the period of observation.
This requirement is a potential source of sample selection, or more specifically
incidental truncation: it is conceivable that for a given house, two sales take place
during the period of observation, only if some other variables take on a precise
range of values. In particular, these variables can be expected to determine (i)
the decision to sell, and (ii) the likelihood of finding a buyer. Put di!erently, the
combination of self-selection into the housing market, and of housing demand, are
likely to introduce non-randomness in the subset of houses which were sold at least
twice, thus biasing estimates of housing price indices.

I seek to tackle sample selection by relying on a traditional solution to this
issue: Heckman’s correction method.
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3.1 Modeling sample selection

We now suppose that being part of the subset of houses which were sold at least
twice, denoted S, can be modeled by a latent variable µ↓, with µ↓

i ↗ 0 if and only
if house i is in the selection sample. Otherwise, µ↓

i < 0 if house i was not sold
at least twice during the period of observation, in which case it belongs to set S̄.
Since µ↓

i is latent, we only observe µi = 1{µ↓
i ↗ 0}, and make the assumption that

µ↓
i = niς + vi (10)

where ni is a vector of explanatory variables for the presence or absence of house
i in set S, and vi is an i.i.d. error term with a standard normal distribution.
For simplicity, let Pitit→i

denote the pair of prices for house i. If i → S, then
Pitit→i

= P ↓
itit→i

= (Piti , Pit→i
), otherwise it is not observable. This leads to the setup

described in table (2).

Table 2: Observed, latent and unobserved variables
µ↓
i ↗ 0 µ↓

i < 0

i → S → S̄
µi 1 0
Pitit→i

P ↓
itit→i

unobserved

I set vector notation based on the matrix notation from the ARS equations (8)
and (9). Let yi denote entry i of vector y, xi is a length T vector equal to the ith
row of matrix X, ϖi is entry i of ω, and zi is a length T vector equal to the ith row
of matrix Z. We now have the following three-equation model:

yi = xiϑ + ϖi (11)

xi = ziϱ + ui (12)

µi = 1{niς + vi ↗ 0} (13)

Note that these hypotheses do not, by themselves, necessarily imply that sample
selection in S biases the estimation of the ARS index. Indeed, if y and the selection
variable, µ↓, are independent conditional on X, then selection would be exogenous,
and the ARS estimation would be unbiased. If we assume, however, that this is
not the case, we may model selection bias as arising from a correlation between
ω and vi. Thus, we consider the classic hypothesis of bivariate normality between
the error terms: [

ωi
vi

]
↘ N

([
0
0

]
,

[
ω2

εi φωεi

φωεi 1

])
(14)
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where ϖi = eit→iti + nit→iti
, ω2

εi = V(ϖi) (the full expression is given in equation (3)),
and φ is the correlation between ϖi and vi.

Ideally, the selection equation should incorporate time-dependent selection vari-
ables, since local characteristics determining the selection of a given house into S
are likely to evolve across time. However, the model would require some refine-
ment, as it is not straightforward to adapt this requirement to houses in S̄; indeed,
these houses are never sold during the period of observation, and thus no specific
date can be attributed to them.

One could interpret as follows the bias that sample selection might lead to in
the ARS estimation. Suppose for simplicity that all houses in the sample were sold
in t = 0 and t = 1. Suppose furthermore that pa1 → (0, 1), and that the houses
which were sold in period 1, i.e. houses in S, all had second period prices such
that P1 > P̃1, for some P̃1 > 0. In words, house values decreased between the two
periods, and the only houses which were sold in period 1, were houses whose price
in the base period was above a threshold P̃1, for instance because P̃1/pa1 ≃ P̃0

represents a minimum, expressed in base period-value, required by house owners
willing to sell their house in period 1. In this setup, the price formation equation
– using price levels instead of log prices and subsuming the error terms under the
term ϖi –, based on equation (2), would be Pi0 = Pi1/(pa1ϖi).2 House i, on average,
has Pi0 = Pi1/pa1. However, some houses may experience individual shocks, such
that ϖi ⇐= 1. In particular, there may exist some house i → S such that Pi0 < P̃0,
but with ϖi > 1 large enough so that Pi1 = Pi0pa1ϖi > P̃1. In other words, if it
were to follow the aggregate house value trend, the price of such a house i in the
base period would be too low to reach the minimum required for house i to be in
S, but because of an individual shock, its price in period 1 is above the threshold
P̃1. This possibility will induce a negative correlation between ϖ and P0: most
houses will have a base period price such that Pi0 > P̃0, but some houses with
Pi0 < P̃0 will select in S because of large positive errors. On the other hand, as
P0 increases, just about any value for ϖ is conceivable, including very small values.
This negative correlation may lead to an underestimated index.

In these circumstances, it is useful to know the determinants of selection in
S, as well as their magnitude. This is the purpose of equation (13). There are
numerous possible determinants, represented by the vector ni; I focus on local
demographic, economic and housing data, as specified in section (4). Knowing
these determinants will enable us to distinguish houses which are and should be
in S, based on observable characteristics, from houses which are spuriously in S,
i.e. houses with large positive values for vi. Under the hypotheses of the three-
equation model, the correlation between ϖi and vi allows us to control for the
selection induced-endogeneity of ϖi. The next subsection details how this can be

2
Where pat1 is shorthand for epa1 , as is ωi for eωi .
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done.

3.2 Estimation in the context of sample selection

There are several conceivable options for estimating the parameters of interest,
given the model presented in section (3.1). One choice may be to make the ad-
ditional assumption of trivariate normality of the error terms (ϖi, ui, vi), and to
estimate the model by maximum likelihood. This is feasible, but computationally
demanding, and less robust than a procedure based on Heckman’s correction if we
allow for correlation between the error terms in the correlation matrix.3

The method we used relies on the well known property of bivariate normal
variables, allowing us to express ϖi in terms of vi:

ϖi = φωεivi + ↼i

where ↼i is a random normal variable, with mean 0 and variance 1 ↑ φ2. Conse-
quently, using equations (11) and (13), we have

E(yi|xi, µi = 1) = xiϑ + φωεiE(vi|xi, µi = 1)

= xiϑ + φωεiE(vi|xi, vi ↗ ↑niς)

= xiϑ + φωεi

↽(niς)

#(niς)
(15)

where the fraction in the last line is the inverse Mills ratio, denoted ⇀(niς) for
simplicity. It appears from this equation that – since the inverse Mills ratio is
strictly positive –, if φ is positive, the regression line of yi on xi will have a posi-
tive bias, and conversely, if φ is negative, the regression line will have a negative
bias. However, in our setup, knowing the sign of φ does not su”ce to predict the
estimator’s bias for each period. Indeed, φ interacts with another term whose sign
is ambiguous: the product between the matrix (Z→

X)↑1
Z

→ and the vector of in-
verse Mills ratios. The expression of the non-corrected estimator’s expected value,
E(ϑ̂ARS|X,Z,n), demonstrates this fairly clearly. Assume there are n sales pairs
in S. Let ϑ be a vector of inverse Mills ratios of length n, for the houses in S:
entry i is ⇀(niς). We then have that

E(ϑ̂ARS|X,Z,n) = E((Z→
X)↑1

Z
→
y|X,Z,n)

= (Z→
X)↑1

Z
→
Xϑ + (Z→

X)↑1
Z

→E(ω|X,Z,n)

= ϑ + φω(Z→
X)↑1

Z
→ϑ (16)

The second term in equality (16) is a vector of length T . Since the index in period
t is the reciprocal of the tth entry of ϑ̂ARS, it will be positively biased if the tth

3
See Wooldridge (2010), p. 813.
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entry of φω(Z→
X)↑1

Z
→ϑ is negative, and negatively biased in the other case. Note

that if the tth entry of φω(Z→
X)↑1

Z
→ϑ is negative and close in absolute value to

the tth entry of ϑ4, bias of the index will be very large, because of the asymptote
at x = 0 of the function x ⇒⇑ 1/x. The impact of a marginal increase of ⇀(niς)
on the direction of the non-corrected estimator’s bias, however, is ambiguous, and
would require a deeper exploration of the sample-corrected model.

Importantly for estimation concerns, since x is not exogenous, the usual two-
step Heckman method would not provide consistent estimates of ϑ.5 Nevertheless,
a similar three-step method should provide consistent estimates:

1. Using all observations (i → S ⇓ S̄), estimate ς with a probit regression of µ
on n. With this estimate, compute inverse Mills ratios ⇀(niς̂).

2. For i → S, estimate yi = xiϑ + ⇀(niς̂) + ϖi by two stage least squares, using
(zi,⇀(niς̂)) as instruments.

3. Correct for heteroscedasticity by performing a weighted least squares version
of the two-stage least squares regression in step 2, as described for the non-
corrected repeat sales indices.

This method is recommended by Wooldridge (2010)6, under the assumptions that
(a) (ni, µi) is always observed, and (yi,xi) is observed when µi = 1, (b) (ϖi, vi)
is independent of ni, (c) vi is a standard normal random variable, (d) E(ϖi|vi) is
proportional to vi, and (e) E(ziui) = 0, and the variables contained in zi must not
only be exogenous variables from the equation of interest. Assumptions (a), (c)
and (d) all directly result from setup of the model. As for assumption (e), the first
and second parts are the exclusion restriction and the rank condition, required
when using instruments (independently of selection). Lastly, assumption (b) is a
typical exogeneity condition in Heckman regressions.

An important issue is that normal standard errors have to be adjusted in this
procedure, either via bootstrap, or by correcting the covariance matrix obtained
in the last step of the procedure. When performing the regressions, I relied on the
computation of the covariance matrix proposed by Heckman, and implemented in
the R package SampleSelection. Robustness checks should ideally be performed
via bootstrap.

Finally, it is perfectly conceivable, even in a short period, that a given house
is sold more than once. This indeed does occur in the data. Suppose for instance

4
All the entries of ε are positive, since house prices are positive.

5
This method involves obtaining an estimate ϑ̂ of ϑ in a first step probit, and then regressing

y on x and ϖ(niϑ̂), by OLS.
6
Wooldridge, Econometric Analysis of Cross Section and Panel Data, section 19.6.2.
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that the data contain sales prices for house i in three di!erent dates t̃i > t→i > ti.
In this situation, I assume there are two sales pairs, one in periods ti and t→i, and a
second one in periods t→i and t̃i. This induces correlation between the sales pairs,
since according to the price forming equation (2), Cov(pit̃i ↑ pit→i , pit→i ↑ piti) =
↑ω2

n. Though this correlation could bias the index estimates without adopting
a generalized least squares strategy, it seems according to Clapp and Giaccotto
(1992) that the bias is small.

4 Data for the Chicago metropolitan area

The data come from two main sources: housing data, containing records of transac-
tions on property deed as well as information regarding all houses in metropolitan
Chicago, and census data at the block group level.

A metropolitan statistical area is defined by the United States federal gov-
ernment as one or more adjacent counties with at least one urban core, which
includes a population of at least 50,000 (when this population is between 10,000
and 50,000, the region is a called a micropolitan statistical area). An urban core
is defined by the Census Bureau as contiguous census geographical units – block
groups – having a population density of at least 390/km2, with surrounding units
having a density of at least 190/km2. The Chicago metropolitan statistical area
thus covers 14 counties located in 3 states: Illinois, Wisconsin and Indiana. The
total population in 2010 was 9,461,105 according to the Census Bureau.7

4.1 Single family housing deeds and housing data

The housing data merge two rich sources: records of transactions, also known as
deeds, which are legal documents pertaining to property rights, and county tax
data, providing us with a list of all houses in the Chicago metropolitan statistical
area, along with their location.

The deed data are collected by CoreLogic, a business, property and consumer
information firm. The data base on which I worked contains records for all deeds
passed in the Chicago metropolitan statistical area, in the years 2000 to 2014.
In the United States, deed registration began around 1640, in the Plymouth and
Massachusetts Bay colonies, though it was not an English custom. It serves several
purposes, including public information and protection of property rights.8

A deed is a legal document, which in real estate law confirms, among other
things, the transfer of property rights. Only grant deeds were kept, a type of

7https://www2.census.gov/programs-surveys/decennial/tables/cph/cph-t/
cph-t-2/cph-t-2.xls

8
Dukeminier and Krier, Property, 2002.
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deed generally executed by house sellers, and containing the sale price. Within
these grant deeds, I cleaned the data from non arms-length transactions, ensur-
ing that the parties to a transaction are independent and on equal footing, and
hence that the property is sold at market price. For the same reason, foreclosed
houses were dropped, as well as nominal transactions. Following Standard & Poor’s
methodology, I dropped deed observations occurring less than six months after the
previous deed for the same house, and the observations were restricted to single
family housing. This guarantees that the price changes aren’t a!ected by house
flipping or fraudulent transactions, and that the index doesn’t combine di!ering
trends specific to various types of housing units, respectively. This leaves with us
with 460,144 transactions, of which 118,070 are sold twice or more, and altogether
154,928 sales pairs. 386,428 houses were sold at least once during the period of
observation.

The tax data registers all houses in the Chicago statistical metropolitan area
as of 2015, including those which weren’t sold during the period of observation. It
also contains their geographic coordinates. The data set contains 2,334,649 single
family houses. Hence, between 2000 and 2014, 16.6% of all houses were sold at
least once.

4.2 Demographic and economic census data

Census data is made publicly available by the National Historical Geographic
Information System. I used data at the block group level, which is the smallest
geographic unit in Census data; they are constructed to contain a population of
600 to 3,000 people. In the Chicago metropolitan statistical area, there were 6,305
block groups in 2000. So as to merge the housing transaction data with the census
data, I made use of the 2000 census block group shape file. Figure (1) displays the
Chicago metropolitan statistical area, and a portion of central Chicago. Naturally,
since the center denser than the rest of the area, the block groups are smaller.

I focused on variables which are likely to a!ect the probability of sale frequency,
and thus selection in the sample of houses which were sold at least twice during
the period of observation, S. Those variables are household median income, the
median year in which the block’s buildings were built, the fraction of vacant hous-
ing, population fractions of di!erent races, population levels, and distance between
the block group’s centroid and the Central Business District (CBD).
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Figure 1: Block group structure in Chicago

(a) Chicago Metropolitan Statis-

tical Area

(b) Central Chicago

It should be noted that Chicago is an intensely segregated city. Though the
population is almost evenly distributed among blacks (33%), whites (32%) and
Hispanics (29%), most neighborhoods are not highly integrated. For instance, the
exposure index of whites to blacks was 4.5% in 2000,9 meaning that the average
fraction of blacks among an average white Chicagoan’s neighbors is 4.5%.10 For
individuals who identify as multiracial, a possibility since the 2000 census, segre-
gation appears to be relatively lower: the black/white exposure to whites is 50.7%,
and 25.6% to blacks. However, only 0.24% of the Chicago population identifies as
black/white. Race is an essential and standard variable in urban economics and
urban studies in general, because it captures various underlying local aspects at
the neighborhood level. To quote one of many examples, the sociologist Robert J.
Sampson makes the case that the percentage of blacks is a strong predictor of the
perceived disorder in di!erent Chicago neighborhoods (which is related to mean
public behavior that is considered threatening or undesirable, including verbal ha-
rassment, garbage in the streets, or violent crime), and is furthermore independent
of the respondent’s race, as well as a better predictor of perceived disorder than
reliable measures of disorder. He goes on to argue that measures of perceived dis-
order incorporate the stigma of majority black neighborhoods, which may play an
important role in the persistence of poverty in many of these neighborhoods.11 It
may thus be expected that perception of neighborhoods based on their racial com-

9
See Frey and Myers, Neighborhood Segregation in Single-Race and Multirace America: A

Census 2000 Study of Cities and Metropolitan Areas, 2002.
10
Let nb

, nb
j and nj denote respectively the total number of blacks in the city, the number of

blacks in neighborhood j, and the population of neighborhood j; nw
and nw

j are defined similarly

for whites. The exposure index of whites to blacks is then
∑

j
nw
j

nw

nw
j

nj
.

11
Sampson, Great American City, Chicago and the Enduring Neighborhood E!ect, 2012.
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position impacts the attractiveness of its housing market, not only with respect to
prices, but also regarding sale intensity.

The other selection variables are more directly linked to sale intensity, most
notably vacant housing and median year of building construction. Indeed, neigh-
borhoods with more vacant housing can be expected to have a larger stock of
houses on the housing market, and hence to have more sales; this e!ect may be
ambiguous, however, because very large fractions of vacant housing may be asso-
ciated with undesirable neighborhood features, and a symptom of its avoidance by
buyers. As for the median year of construction, it increases if buildings were newly
constructed, and hence on sale. Lastly, distance from the CBD gives information,
to some extent, on the benefit of location in a given block group, since most jobs
are located in the vicinity of the CBD.

As mentioned earlier, it would be preferable to take into account potential
changes across time in the selection variables. This would require a more sophis-
ticated model, and potentially non-existent data: decennial census data is more
reliable than the American Community Survey, which is not available before 2005.
Hence, local characteristics in the data set at use is set to the year 2000.

4.3 Sale intensity and its relation with selection variables

Before proceeding with the presentation of the results, it is valuable to look at
some aspects of the selection variables, and possibly their relationship with hous-
ing prices. Even without the repeat sales method, some e!ects of the 2006 financial
crisis should be visible on the prices, as well as on the likelihood to sell. There
is indeed substantial heterogeneity between block groups, as made clear in table
(3). Variables indicating the presence of the three main ethnic groups (blacks, His-
panics and whites) in neighborhoods, for instance, have large standard deviations,
indicating high polarization and segregation levels. The same is true for median
income.

Let us focus especially on the ratio of the number of sales to the number of
housing units in each block group, for various years. This ratio, referred to as
sale intensity, is similar to the sale probability in each block group, though some
houses may be sold more than once in a year, virtually making it possible for the
ratio to be strictly greater than 1, though this never occurs when it is measured
for a single year. Sale intensity is essential, because it may help understand the
correction resulting from the estimation strategy presented in subsection (3.2). It
is clear from the maps of central Chicago, displayed in figure (2), that there are
global and local patterns of sale intensity, though the latter are not as striking.
The boom and bust dynamics, preceding and following the 2006 housing crisis, are
very apparent.

In the North Side, there is no apparent di!erence between 2006 and 2014.
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Table 3: Summary statistics for the 6,305 block groups

Variable mean stand. dev. median min max

Sale intensity (2000-2014) 0.3 0.4 0.1 0 2.1
Median income ($) 53,009.1 26,229.4 48,938 0 200,000
Distance from CBD (miles) 18.4 13.2 14.6 0.1 82.7
Fraction vacant 0.1 0.1 0 0 1
Median year of building const. 1951.3 15 1955 1939 1999
Fraction Asians 0 0.1 0 0 0.9
Fraction blacks 0.2 0.4 0 0 1
Fraction Hispanics 0.2 0.2 0.1 0 1
Fraction whites 0.6 0.4 0.7 0 1
Fraction other races 0 0 0 0 0.3

Neighborhoods in the vicinity of the lake and of the CBD maintain a relatively
high sale intensity after 2006, whether poor or rich. Particularly rich and white
suburbs, such as Wilmette (north of Evanston and thus not visible in the figure),
are always characterized by low sale intensity, which don’t change much across
years.

Unlike the North Side, some neighborhoods of the South Side have strong sales
intensities - at least at the beginning of the period - despite not being very close to
the center and far from the shore. These neighborhoods are concentrated between
West 43d and West 83rd Streets, just west of the University of Chicago. Sales
in these neighborhoods were much less dynamic in 2014 than in 2006, though it
seems that sale intensity decreased progressively rather than brutally. Though I
have not looked for evidence in the data, it is probable that this is due to the many
foreclosures that took place in these neighborhoods. Indeed, the southeastern
neighborhoods of the South Side culminated in 2007 with a rate above 25 foreclosed
houses for every 1,000 mortgageable properties.12 Foreclosures concentrated in
minority areas.

Overall, it seems centrality counteracts bust e!ects, which lower sale inten-
sity in most places. Central Chicago is not representative of the whole Chicago
metropolitan area: in most places, a smaller distance from the center doesn’t coun-
teract the negative impacts on sales of high median incomes, or high fractions of
whites, for instance.

12
See Young, The Foreclosure Crisis in the Chicago Area: Facts, Trends and Responses, 2008

16



Figure 2: Sale intensity in block groups from central Chicago

(a) 2004 (b) 2006 (c) 2008

(d) 2010 (e) 2012 (f) 2014

The sale intensity scale is identical in all years.
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We now turn to the relationship between sale intensity and the block groups’
economic status, as measured by their median income. Panel (a) in figure (3)
depicts this relationship for sales occurring between 2005 and 2012. During the
whole period, lower income neighborhoods experience higher sale intensity than
richer block groups. This is especially true in 2005 and 2006, where there is a
peak sale intensity for neighborhoods with a median income just below $25,000.
Sale intensity brutally decreases in 2008 – the most severe bust year along with
2007, inducing numerous foreclosures – but still remains higher than richer neigh-
borhoods, and goes on to increase slightly until 2012, in what seems to resemble
a recovery period. Panel (b) gives a sense of the percentage changes of nominal
prices corresponding to these sales. Quite strikingly, houses in poor neighbor-
hoods had the highest price increase until 2007 (year not displayed in the figure),
and subsequently experienced a price decrease in 2008, unlike most houses from
neighborhoods with median incomes above $75,000.

Figure 3: Correlations between median income and sales from 2005 to 2012

(a) Sale intensity and median income

(b) Price increase and median income

Graphs produced with the local regression (LOESS) method.
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5 Results

The results are presented in two parts, corresponding to the two main stages of the
regression. The first part, subsection (5.1), provides a more precise understanding
of the determinants of selection in the sample of houses which are sold at least
twice. Subsection (5.2) discusses the index itself.

5.1 First step probit

The average marginal e!ects of the determinants are displayed in the appendix,
in table (4), in two di!erent specifications. Because of the apparently non-linear
relationship between median income and sale intensity, the impact of median in-
come was estimated on income bins. The same was done for distance from the
CBD.

The first specification does not include distance from the CBD. As could be
expected, the fraction of vacant houses has a large positive and significant e!ect on
the likelihood of selecting in S, though it falls from 0.42 to 0.11 in the second spec-
ification, a sign that omitting centrality causes bias, and that a significant portion
of houses in block groups with large fractions of vacant houses were located in cen-
tral block groups, i.e. the ones with the highest sale intensities. Moreover, as was
foreshadowed by the graph in panel (a) of figure (3), in the previous subsection,
the regression line of selection in S on median income is concave, reaching a max-
imum for a median income of about $20,000. Houses located in neighborhoods
with median incomes as high as $40,000 (in the second specification) still have
significantly higher probabilities of being in S than houses in the poorest block
groups (below $10,000). Starting from a median income of $60,000, selection less
and less likely as the median income increases.

Marginal e!ects for fractions of ethnic groups are equally informative about
selection in S. The fraction of white population was not included in the regressors,
to avoid collinearity in the independent variables. The fraction of blacks has
a negative e!ect on selection, and this e!ect becomes stronger when distance
from the CBD is included in the specification, because many block groups with
high fractions of blacks are located near the center of Chicago, especially in the
South Side. The same is true of Hispanics, whereas selection becomes more likely
as the fraction of Asians increases. Surprisingly, selection likelihood increases
strongly with the fraction of minorities categorized as “other”, but these minorities
represent 0% of the population in the average block group.

Selection in S is, as predicted, less likely as the distance from the CBD in-
creases. This likelihood decreases at an almost constant rate between 4.5 and 10
miles from the CBD, with an average probability decrease of 0.025 for every 2.5
extra mile. The slope of this probability decline is less steep and even positive in
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the area between 1 and 4 miles from the CBD, because this area is highly residen-
tial, and also more likely to have a higher density of single family homes than the
center of Chicago, where large apartment buildings and condos are more common.

It is of central interest to make sense of the inverse Mills ratio (IMR), computed
in the first step of the corrected ARS method, just after the probit regression. For
instance, are there geographical patterns arising from the IMR values? Given that
high IMR values reflect an improbable selection in S (as long as the only relevant
predictors are those contained in n), one should expect that block groups which
are farthest from the CBD to have the lowest IMR values. This is indeed the case,
as suggested in figure (4). In panel (a), the IMR values correspond to the first
regression specification, which did not include distance from CBD. Though it is
clear that Chicago and its immediate vicinity have lower IMR values than more
distance suburbs, this pattern is more visible in panel (b), where more remote
block groups have higher IMR values, indicated by the stronger red hue, and the
center is more homogeneously blue. In panel (b), there is a semi-circle, with a
radius of about 40 miles and whose center is the CBD, beyond which most block
groups have the highest IMR levels (3 and above). How will these changes a!ect
the corrected price index?

Figure 4: IMR values resulting from probit for two di!erent specifications

(a) Covariates don’t include distance from

CBD

(b) Covariates include distance from CBD

A way to address this question is too explore the relationship between IMR
levels and price changes. In this respect, one may expect houses which are most
likely to select in S to be characterized by price increases in some periods, but not
necessarily in all periods; the same should apply to the houses least likely to select
in S. Figure (5) presents the correlation between log price increases and IMR
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levels, conditional on time. The IMR values result from the probit specification
in which distance from CBD is not included in the covariates. Between 2000 and
2005, and then from the end of 2008 to the end of the period of observation, this
correlation is negative. Hence houses which were most likely to select in S – if the
determinants taken into account are restricted to the probit covariates – generally
experienced price increases. This was not the case during the most acute boom
and bust periods, from 2005 to the end of 2008, when houses which were least
likely to select in S experienced price increases, while the opposite was true for
houses which were more typically in S.

Figure 5: Correlation between IMR levels and price change, conditional on time

The date is that of the first sale, for each sale pair. The IMR values were those resulting from specification (1),

table (4). When the date is that of the second sale, the graph is similar.

Interestingly, this pattern almost entirely disappears when the IMR values are
those from the specification which controls for distance from the CBD: the corre-
lation between IMR values and price increase is negative and almost constant, with
an average value of -0.09. The explanation is the following. In the first specification
(i.e. when distance from the CBD is not in the covariates), one of the unobserved
characteristics is distance from the CBD: some block groups with high IMR levels
experienced high sale intensity and have numerous houses in S because of central-
ity, even though the values taken by the selection variables would predict unlikely
selection in S. Such block groups are in central Chicago, and typically have low
median incomes. It was shown previously that houses in low median income block
groups had high price increases until 2008, at which point they underwent brutal
price decreases. The same can be said of neighborhoods with high fractions of
blacks and/or Hispanics, but not for block groups with high proportions of whites,
which experience smaller price decreases, especially in 2010.13 Hence it seems that
houses from central block groups with high IMR values in the first specification

13Cf figure (8), in the appendix
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are driving the pattern in figure (5). And indeed, when central and low household
median income block groups (less than 10 miles from the CBD, and with a median
income below $40,000), or central block groups with high fractions of blacks or
Hispanics (above 30 percent), are removed from the data, the correlation is mostly
negative and almost always below 0.075 from 2005 to the end of 2008. Further-
more, the pattern is maintained when middle to high median incomes ($60,000
and more) are removed from the data.

The correlation between the IMR and price increase entails various potential
consequences for the corrected estimator. Consider the case of the first specifi-
cation. The sign of the estimate of φ can plausibly be predicted based on this
correlation, since during most of the period of observation, high IMR levels are
associated with price decrease, and while the opposite is true for roughly a quar-
ter of the total period. Based on the regression equation (15), the relationship
between the IMR and price shifts for an individual house can be rewritten

E(Piti |xi, µi)p
↑1

ati ↑ E(Pit→i
|xi, µi)p

↑1

at→i
= φωεi⇀(niς)

where it is assumed that if ti = 0, then pati = 1. If price increases are in gen-
eral negatively related to IMR levels – as suggested thus far –, then φ should be
negative, and conversely if the relation is positive. As explained previously, these
two cases are associated with 2T potential sub-cases, depending on whether the T
entries of the vector (Z→

X)↑1
Z

→ϑ are positive or negative.
As for the second specification, the IMR and price increases are always nega-

tively correlated, with a small absolute value, suggesting that the estimated φ will
be negative and close to 0. Hence the corrected index will most likely be similar
to the non-corrected ARS index.

5.2 Corrected vs non-corrected index

I present the results from first specification, and subsequently from the second
specification, in which the distance from the CBD is included among the covariates.
Table (5) in the appendix displays the estimation results.

5.2.1 The corrected index when distance from the CBD is not a selec-

tion variable

In this setup, φ is estimated at -0.0952, and the coe”cient for the inverse Mills
ratio is -8,394 and highly significant, indicating that if the IMR of house i is 1, then
all else being equal, its price for its first sale adjusted for the base period is $8,394
lower than its price in the second sale adjusted for the base period. Indeed, the
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second step regression’s structural equation for the corrected ARS can be written

Pitip
↑1

ati = Pit→i
p↑1

at→i
+ φωεi⇀(niς) + ϖi

where φωεi is the coe”cient for the IMR. It follows that houses which are least
likely to select in S – according to the first specification – experienced higher price
increases. This confirms evidence from the previous subsection.

The corrected index is displayed in figure (6), which also includes the non-
corrected ARS index. Since the 95% confidence intervals do not intersect during
most of the period of observation, the di!erence between the two indices is gen-
erally significant. Unsurprisingly, the general trends are comparable for the two
indices: prices increase from 2000 to mid-2007, and then decrease until mid-2012,
after which they increase again. The shape of the curve reflects the housing boom
and bust of this period. Crucially, the corrected index is almost systematically
smaller than the regular ARS estimate.

Figure 6: Corrected ARS resulting from the first specification, and regular ARS

The dotted lines are the 95% confidence intervals; the standard errors are adjusted with the delta-method.

A straightforward but incomplete interpretation is that the regular ARS overes-
timates the boom because of houses with high IMR levels in S, which capture a
combination of centrality, low median incomes and a high presence of blacks or
Hispanics. Moreover, from 2005 to the end of 2008 – the end of the boom and
beginning of the bust periods –, IMR levels were positively correlated with price
increases. Hence the housing price boom as depicted by the regular ARS may be
partly excessive, since it results from the specific characteristics of houses in block
groups with high IMR levels.

However, it was shown that during most of the period of observation, IMR levels
and price increases were negatively correlated, so the previous argument does not
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explain why the regular ARS overestimates house values during most of the period.
Furthermore, recall that the econometric explanation for the overestimation of the
index is that φω(Z→

X)↑1
Z

→ϑ is negative, implying that (Z→
X)↑1

Z
→ϑ is positive. My

current knowledge of the correction model does not enable me to conclude as to
what this entails regarding the relationship between X, Z and ϑ.

5.2.2 The corrected index when distance from the CBD is included in

the covariates

In this setup, φ is still negative, though significantly smaller: it is estimated at
-0.025. It is thus not surprising that the correlation between the IMR level and the
price increase – though still negative and significant – has a smaller magnitude:
an IMR of 1 indicates that the base period is $1,918 lower than its price in the
second sale adjusted for the base period.

This low correlation results in a corrected index which is very close to the
non-corrected ARS, as displayed in figure (7). The fact that their confidence in-
tervals overlap is not su”cient to conclude that they are not significantly di!erent;
however, the confidence intervals adjusted for the di!erence of the estimates sys-
tematically include 0.

Figure 7: Corrected ARS resulting from the second specification, and regular ARS

The dotted lines are the 95% confidence intervals; the standard errors are adjusted with the delta-method.

Hence, when the distance from the CBD is included in the first step selection
regression, the corrected ARS index is no longer di!erent from the regular ARS.
The econometric reason is that the correlation between the IMR and price changes
is very weak. This reflects the fact that houses with high IMR levels are now almost
exclusively houses in the outskirts of Chicago, where sale intensity is predominantly
low and price changes do not radically di!er from the average changes.
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6 Conclusion

This study has revealed diverging patterns of housing sale intensity depending on
location and demographic variables. It furthermore explored how these di!erences
could be associated with housing price changes, and how they potentially could
be integrated within an econometric framework to capture and correct changes in
housing values.

It was found that results are very di!erent depending on the inclusion of the
distance from the CBD in the covariates of the selection equation: when it is in-
cluded, the corrected price index does not di!er from the regular ARS, whereas the
latter is shown to be overestimated when distance from the CBD is not a covari-
ate. A modest conclusion from these diverging results is that housing features and
trends within central Chicago are very diverse, but when compared with suburban
neighborhoods, their centrality makes them more alike than distinct, because of
similar sale intensities. The major conclusion that can be drawn from this di!er-
ence is that further exploration should make use of more variables characterizing
block groups: crime and indicators of various amenities, for instance, may prove
useful in exploring the heterogeneity of determinants of selection in the sample.

Finally, a deeper understanding of the correction model may prove useful. First
regarding the formula of the corrected index: I took a few steps in this direction,
but found so for no obvious clarification as opposed to the normal equations pro-
vided by the GRS and ARS indices. Second, the meaning of the bias of the
non-corrected index in terms of price changes. And third, an economic model may
ideally help shed light on the selection process.
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8 Appendix

Table 4: Determinants of selection in S: average marginal e!ects

in the first stage probit

(1) (2)

Fraction black -0.007
→→→

-0.021
→→→

(0.001) (-0.001)

Fraction asian 0.23
→→→

0.038
→→→

(0.002) (-0.002)

Fraction hispanic -0.014
→→→

-0.06
→→→

(0.001) (-0.001)

Fraction other 1.037
→→→

0.493
→→→

(0.012) (-0.011)

Fraction vacant 0.424
→→→

0.115
→→→

(0.003) (-0.003)

Median year of building construction -0.001
→→→

0.001
→→→

(0) (0)

Log(population) 0.021
→→→

0.017
→→→

(0) (0)

Median income ($)
(1e+04,2e+04] 0.067

→→→
0.044

→→→

(0.005) (-0.002)

(2e+04,3e+04] 0.03
→→→

0.043
→→→

(0.004) (-0.002)

(3e+04,4e+04] 0.005
→

0.031
→→→

(0.003) (-0.002)

(4e+04,5e+04] 0.001 0.025
→→→

(0.003) (-0.002)

(5e+04,6e+04] -0.016
→→→

0.006
→

(0.003) (-0.002)

(6e+04,1e+05] -0.019
→→→

-0.013
→→→

(0.003) (-0.002)

(1e+05,1.25e+05] -0.019
→→→

-0.021
→→→

(0.002) (-0.002)

(1.25e+05,1.5e+05] -0.028
→→→

-0.025
→→→

(0.002) (-0.003)

(1.5e+05,1.75e+05] -0.006 -0.026
→→→

(0.003) (-0.003)

(1.75e+05,2e+05] -0.054
→→→

-0.028
→→→

(0.001) (-0.003)

Distance from CBD (miles)
(0.5,1] -0.187

→→→

(-0.008)

(1,1.5] -0.207
→→→

(-0.008)

(1.5,2] -0.274
→→→

(-0.008)

(2,2.5] -0.202
→→→

(-0.009)

(2.5,3] -0.221
→→→

(-0.008)

(3,3.5] -0.161
→→→

(-0.008)

(3.5,4] -0.186
→→→

(-0.008)

(4,4.5] -0.169
→→→
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Table 4: Determinants of selection in S: average marginal e!ects

in the first stage probit

(1) (2)

(-0.008)

(4.5,5] -0.209
→→→

(-0.008)

(5,5.5] -0.206
→→→

(-0.008)

(5.5,6] -0.254
→→→

(-0.008)

(6,6.5] -0.269
→→→

(-0.008)

(6.5,7] -0.283
→→→

(-0.008)

(7,7.5] -0.333
→→→

(-0.008)

(7.5,8] -0.37
→→→

(-0.008)

(8,8.5] -0.387
→→→

(-0.008)

(8.5,9] -0.396
→→→

(-0.008)

(9,9.5] -0.419
→→→

(-0.008)

(9.5,10] -0.44
→→→

(-0.008)

(10,15] -0.462
→→→

(-0.007)

(15,20] -0.47
→→→

(-0.007)

(20,25] -0.466
→→→

(-0.007)

(25,30] -0.482
→→→

(-0.007)

(30,35] -0.5
→→→

(-0.007)

(35,40] -0.502
→→→

(-0.007)

(40,45] -0.496
→→→

(-0.007)

(45,50] -0.5
→→→

(-0.007)

(50,Inf] -0.506
→→→

(-0.007)

Standard errors are in parentheses.
↑↑↑

and
↑

indicate significance at the 5 percent and 0.1 percent levels,

respectively.
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Figure 8: Correlations between fractions of ethnic groups and price changes from
2006 to 2012

(a)

(b)

(c)

Graphs produced with the local regression (LOESS) method.
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Table 5: ARS results

(1) (2) Non-corrected ARS

Year Month ε̂ 100p̂at std. error ε̂ 100p̂at std. error ε̂ARS std. error ARS

2000 February 0.9703
→→→

103.06 0.013 0.948
→→→

105.48 0.012 0.975297
→→→

0.0194 102.53

March 0.9587
→→→

104.31 0.012 0.9384
→→→

106.56 0.010 0.966348
→→→

0.018141 103.48

April 0.9497
→→→

105.30 0.012 0.9272
→→→

107.85 0.010 0.953461
→→→

0.017814 104.88

May 0.9339
→→→

107.08 0.011 0.911
→→→

109.77 0.009 0.937182
→→→

0.016984 106.70

June 0.9036
→→→

110.67 0.010 0.8816
→→→

113.43 0.009 0.907072
→→→

0.016421 110.25

July 0.8933
→→→

111.94 0.011 0.8729
→→→

114.56 0.010 0.898454
→→→

0.017047 111.30

August 0.8771
→→→

114.01 0.010 0.8542
→→→

117.07 0.008 0.878405
→→→

0.015744 113.84

September 0.8921
→→→

112.09 0.010 0.8684
→→→

115.15 0.009 0.893321
→→→

0.0162 111.94

October 0.9186
→→→

108.86 0.011 0.8909
→→→

112.25 0.010 0.915341
→→→

0.017008 109.25

November 0.8859
→→→

112.88 0.011 0.8609
→→→

116.16 0.010 0.884919
→→→

0.016896 113.00

December 0.9013
→→→

110.95 0.011 0.8714
→→→

114.76 0.010 0.894401
→→→

0.016987 111.81

2001 January 0.8843
→→→

113.08 0.012 0.8548
→→→

116.99 0.011 0.876855
→→→

0.017498 114.04

February 0.8624
→→→

115.95 0.012 0.8328
→→→

120.08 0.011 0.854119
→→→

0.017137 117.08

March 0.8681
→→→

115.19 0.011 0.8393
→→→

119.15 0.009 0.861586
→→→

0.016069 116.06

April 0.8357
→→→

119.66 0.010 0.8043
→→→

124.33 0.008 0.824295
→→→

0.01494 121.32

May 0.8642
→→→

115.71 0.010 0.8333
→→→

120.00 0.008 0.855125
→→→

0.015449 116.94

June 0.8467
→→→

118.11 0.009 0.814
→→→

122.85 0.008 0.835148
→→→

0.014776 119.74

July 0.8224
→→→

121.59 0.009 0.7886
→→→

126.81 0.008 0.807667
→→→

0.014476 123.81

August 0.8365
→→→

119.55 0.008 0.7986
→→→

125.22 0.007 0.817327
→→→

0.013984 122.35

September 0.8219
→→→

121.67 0.009 0.7841
→→→

127.53 0.008 0.802218
→→→

0.014388 124.65

October 0.8417
→→→

118.81 0.009 0.8024
→→→

124.63 0.008 0.821998
→→→

0.014626 121.66

November 0.8395
→→→

119.12 0.009 0.7987
→→→

125.20 0.008 0.816639
→→→

0.014782 122.45

December 0.8331
→→→

120.03 0.011 0.794
→→→

125.95 0.009 0.812399
→→→

0.015538 123.09

2002 January 0.8427
→→→

118.67 0.010 0.8035
→→→

124.46 0.009 0.822279
→→→

0.015108 121.61

February 0.8044
→→→

124.32 0.010 0.7651
→→→

130.70 0.009 0.78198
→→→

0.014753 127.88

March 0.8181
→→→

122.23 0.008 0.7772
→→→

128.67 0.007 0.794086
→→→

0.013838 125.93

April 0.8119
→→→

123.17 0.008 0.7691
→→→

130.02 0.007 0.785281
→→→

0.013361 127.34

May 0.8059
→→→

124.08 0.008 0.7611
→→→

131.39 0.007 0.776577
→→→

0.013239 128.77

June 0.7957
→→→

125.68 0.008 0.7507
→→→

133.21 0.007 0.766022
→→→

0.013061 130.54

July 0.8085
→→→

123.69 0.007 0.7604
→→→

131.51 0.006 0.775175
→→→

0.013021 129.00

August 0.7942
→→→

125.91 0.007 0.7473
→→→

133.81 0.006 0.761748
→→→

0.012845 131.28
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Table 5: ARS results

(1) (2) Non-corrected ARS

Year Month ε̂ 100p̂at std. error ε̂ 100p̂at std. error ε̂ARS std. error ARS

September 0.7889
→→→

126.76 0.008 0.7421
→→→

134.75 0.007 0.756391
→→→

0.013073 132.21

October 0.7777
→→→

128.58 0.008 0.7307
→→→

136.85 0.007 0.744792
→→→

0.013189 134.27

November 0.7699
→→→

129.89 0.009 0.7225
→→→

138.41 0.007 0.736846
→→→

0.013453 135.71

December 0.7966
→→→

125.53 0.008 0.747
→→→

133.87 0.007 0.760959
→→→

0.013341 131.41

2003 January 0.7667
→→→

130.43 0.008 0.7152
→→→

139.82 0.007 0.727318
→→→

0.013084 137.49

February 0.7666
→→→

130.45 0.007 0.7166
→→→

139.55 0.006 0.729743
→→→

0.01245 137.03

March 0.7638
→→→

130.92 0.007 0.712
→→→

140.45 0.006 0.723815
→→→

0.012466 138.16

April 0.7656
→→→

130.62 0.007 0.7141
→→→

140.04 0.006 0.726343
→→→

0.012536 137.68

May 0.7612
→→→

131.37 0.007 0.7091
→→→

141.02 0.006 0.720755
→→→

0.012208 138.74

June 0.7673
→→→

130.33 0.007 0.7125
→→→

140.35 0.006 0.723697
→→→

0.012036 138.18

July 0.7589
→→→

131.77 0.007 0.704
→→→

142.05 0.006 0.714909
→→→

0.011983 139.88

August 0.7681
→→→

130.19 0.007 0.7125
→→→

140.35 0.006 0.723523
→→→

0.011992 138.21

September 0.7621
→→→

131.22 0.006 0.7057
→→→

141.70 0.006 0.716813
→→→

0.011778 139.51

October 0.7438
→→→

134.44 0.007 0.6883
→→→

145.28 0.006 0.698758
→→→

0.01189 143.11

November 0.7553
→→→

132.40 0.008 0.6974
→→→

143.39 0.007 0.707536
→→→

0.012468 141.34

December 0.7467
→→→

133.92 0.007 0.6896
→→→

145.01 0.006 0.69959
→→→

0.012089 142.94

2004 January 0.7449
→→→

134.25 0.008 0.6886
→→→

145.22 0.007 0.698687
→→→

0.012428 143.13

February 0.7398
→→→

135.17 0.008 0.6825
→→→

146.52 0.007 0.692178
→→→

0.012323 144.47

March 0.7532
→→→

132.77 0.006 0.6929
→→→

144.32 0.005 0.701943
→→→

0.011498 142.46

April 0.7429
→→→

134.61 0.006 0.6813
→→→

146.78 0.005 0.690134
→→→

0.01125 144.90

May 0.732
→→→

136.61 0.006 0.6702
→→→

149.21 0.005 0.678169
→→→

0.011126 147.46

June 0.7359
→→→

135.89 0.005 0.6735
→→→

148.48 0.005 0.681341
→→→

0.010896 146.77

July 0.7227
→→→

138.37 0.006 0.66
→→→

151.52 0.005 0.667331
→→→

0.01077 149.85

August 0.7264
→→→

137.67 0.006 0.6638
→→→

150.65 0.005 0.671368
→→→

0.01089 148.95

September 0.715
→→→

139.86 0.006 0.6532
→→→

153.09 0.005 0.660716
→→→

0.010865 151.35

October 0.7095
→→→

140.94 0.006 0.6465
→→→

154.68 0.005 0.653453
→→→

0.010956 153.03

November 0.7075
→→→

141.34 0.006 0.6445
→→→

155.16 0.005 0.651325
→→→

0.010942 153.53

December 0.6843
→→→

146.13 0.006 0.6233
→→→

160.44 0.006 0.629984
→→→

0.010851 158.73

2005 January 0.6803
→→→

146.99 0.007 0.618
→→→

161.81 0.006 0.624041
→→→

0.010999 160.25

February 0.6774
→→→

147.62 0.007 0.6147
→→→

162.68 0.006 0.621174
→→→

0.011106 160.99

March 0.6766
→→→

147.80 0.006 0.613
→→→

163.13 0.005 0.61873
→→→

0.010347 161.62
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Table 5: ARS results

(1) (2) Non-corrected ARS

Year Month ε̂ 100p̂at std. error ε̂ 100p̂at std. error ε̂ARS std. error ARS

April 0.683
→→→

146.41 0.006 0.6179
→→→

161.84 0.005 0.623347
→→→

0.010223 160.42

May 0.6748
→→→

148.19 0.005 0.6092
→→→

164.15 0.005 0.614417
→→→

0.009987 162.76

June 0.6695
→→→

149.37 0.005 0.6039
→→→

165.59 0.004 0.608728
→→→

0.009809 164.28

July 0.6737
→→→

148.43 0.005 0.607
→→→

164.75 0.005 0.611789
→→→

0.009948 163.46

August 0.6565
→→→

152.32 0.005 0.5918
→→→

168.98 0.004 0.596478
→→→

0.009688 167.65

September 0.6521
→→→

153.35 0.005 0.5863
→→→

170.56 0.005 0.590843
→→→

0.009753 169.25

October 0.6333
→→→

157.90 0.005 0.5695
→→→

175.59 0.005 0.573347
→→→

0.00962 174.41

November 0.6371
→→→

156.96 0.006 0.5733
→→→

174.43 0.005 0.577801
→→→

0.009703 173.07

December 0.6107
→→→

163.75 0.006 0.5499
→→→

181.85 0.005 0.554089
→→→

0.009525 180.48

2006 January 0.6322
→→→

158.18 0.006 0.5694
→→→

175.62 0.005 0.573849
→→→

0.010091 174.26

February 0.6219
→→→

160.80 0.007 0.5583
→→→

179.12 0.006 0.562111
→→→

0.010146 177.90

March 0.6286
→→→

159.08 0.006 0.563
→→→

177.62 0.005 0.566482
→→→

0.009658 176.53

April 0.6333
→→→

157.90 0.006 0.5667
→→→

176.46 0.005 0.570375
→→→

0.009574 175.32

May 0.6419
→→→

155.79 0.005 0.5734
→→→

174.40 0.004 0.576746
→→→

0.009306 173.39

June 0.6327
→→→

158.05 0.005 0.565
→→→

176.99 0.004 0.568219
→→→

0.009197 175.99

July 0.6296
→→→

158.83 0.005 0.5618
→→→

178.00 0.005 0.564858
→→→

0.009412 177.04

August 0.6208
→→→

161.08 0.005 0.5551
→→→

180.15 0.004 0.558385
→→→

0.009153 179.09

September 0.6181
→→→

161.79 0.006 0.5523
→→→

181.06 0.005 0.555405
→→→

0.00947 180.05

October 0.6106
→→→

163.77 0.006 0.5462
→→→

183.08 0.005 0.549429
→→→

0.009477 182.01

November 0.626
→→→

159.74 0.006 0.5591
→→→

178.86 0.005 0.562266
→→→

0.009759 177.85

December 0.6177
→→→

161.89 0.006 0.5513
→→→

181.39 0.005 0.554283
→→→

0.009787 180.41

2007 January 0.6265
→→→

159.62 0.006 0.5581
→→→

179.18 0.006 0.560982
→→→

0.010027 178.26

February 0.621
→→→

161.03 0.007 0.5516
→→→

181.29 0.006 0.553996
→→→

0.010224 180.51

March 0.6674
→→→

149.83 0.006 0.5914
→→→

169.09 0.005 0.593766
→→→

0.010101 168.42

April 0.6687
→→→

149.54 0.005 0.5917
→→→

169.00 0.005 0.593351
→→→

0.009888 168.53

May 0.6665
→→→

150.04 0.005 0.5902
→→→

169.43 0.005 0.592036
→→→

0.00985 168.91

June 0.6825
→→→

146.52 0.005 0.6042
→→→

165.51 0.005 0.606342
→→→

0.009918 164.92

July 0.6941
→→→

144.07 0.006 0.6129
→→→

163.16 0.005 0.614651
→→→

0.010222 162.69

August 0.6893
→→→

145.07 0.006 0.6076
→→→

164.58 0.005 0.608726
→→→

0.010135 164.28

September 0.7045
→→→

141.94 0.007 0.6205
→→→

161.16 0.006 0.621492
→→→

0.01088 160.90

October 0.7077
→→→

141.30 0.007 0.6235
→→→

160.38 0.006 0.62457
→→→

0.01114 160.11
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Table 5: ARS results

(1) (2) Non-corrected ARS

Year Month ε̂ 100p̂at std. error ε̂ 100p̂at std. error ε̂ARS std. error ARS

November 0.7109
→→→

140.67 0.007 0.6252
→→→

159.95 0.006 0.625802
→→→

0.011402 159.79

December 0.7189
→→→

139.10 0.009 0.6322
→→→

158.18 0.007 0.632738
→→→

0.012237 158.04

2008 January 0.8363
→→→

119.57 0.009 0.7314
→→→

136.72 0.008 0.73055
→→→

0.013867 136.88

February 0.7574
→→→

132.03 0.009 0.6622
→→→

151.01 0.008 0.661642
→→→

0.012804 151.14

March 0.7534
→→→

132.73 0.007 0.6604
→→→

151.42 0.006 0.66074
→→→

0.011561 151.34

April 0.7606
→→→

131.47 0.008 0.666
→→→

150.15 0.007 0.665663
→→→

0.012298 150.23

May 0.7811
→→→

128.03 0.007 0.6809
→→→

146.86 0.006 0.679619
→→→

0.011869 147.14

June 0.7878
→→→

126.94 0.007 0.6879
→→→

145.37 0.006 0.687295
→→→

0.011744 145.50

July 0.8204
→→→

121.89 0.008 0.7142
→→→

140.02 0.007 0.712777
→→→

0.012676 140.30

August 0.8194
→→→

122.04 0.008 0.7131
→→→

140.23 0.007 0.711694
→→→

0.01278 140.51

September 0.8731
→→→

114.53 0.009 0.7579
→→→

131.94 0.008 0.755405
→→→

0.013876 132.38

October 0.9136
→→→

109.46 0.010 0.7908
→→→

126.45 0.008 0.78795
→→→

0.014768 126.91

November 0.9641
→→→

103.72 0.012 0.8337
→→→

119.95 0.011 0.830069
→→→

0.017412 120.47

December 1.029
→→→

97.18 0.011 0.8887
→→→

112.52 0.010 0.884161
→→→

0.017476 113.10

2009 January 1.049
→→→

95.33 0.012 0.9061
→→→

110.36 0.010 0.901983
→→→

0.018271 110.87

February 1.099
→→→

90.99 0.012 0.947
→→→

105.60 0.011 0.941724
→→→

0.019042 106.19

March 1.01
→→→

99.01 0.010 0.8744
→→→

114.36 0.009 0.870865
→→→

0.016741 114.83

April 1.079
→→→

92.68 0.011 0.9307
→→→

107.45 0.009 0.925835
→→→

0.017564 108.01

May 1.044
→→→

95.78 0.010 0.8998
→→→

111.14 0.008 0.895105
→→→

0.016212 111.72

June 0.9825
→→→

101.78 0.009 0.8484
→→→

117.87 0.007 0.844169
→→→

0.014943 118.46

July 0.971
→→→

102.99 0.009 0.8371
→→→

119.46 0.008 0.833142
→→→

0.014844 120.03

August 1.008
→→→

99.21 0.009 0.8684
→→→

115.15 0.008 0.863703
→→→

0.015591 115.78

September 1.006
→→→

99.40 0.009 0.866
→→→

115.47 0.008 0.861096
→→→

0.015585 116.13

October 1.062
→→→

94.16 0.009 0.9136
→→→

109.46 0.008 0.908516
→→→

0.016331 110.07

November 1.013
→→→

98.72 0.010 0.8705
→→→

114.88 0.009 0.865146
→→→

0.016274 115.59

December 1.108
→→→

90.25 0.010 0.9546
→→→

104.76 0.009 0.949166
→→→

0.017785 105.36

2010 January 1.152
→→→

86.81 0.012 0.9936
→→→

100.64 0.010 0.987944
→→→

0.019321 101.22

February 1.202
→→→

83.20 0.012 1.034
→→→

96.71 0.011 1.027007
→→→

0.020029 97.37

March 1.073
→→→

93.20 0.010 0.9229
→→→

108.35 0.009 0.917267
→→→

0.017027 109.02

April 1.001
→→→

99.90 0.010 0.8612
→→→

116.12 0.008 0.856078
→→→

0.015791 116.81

May 0.9758
→→→

102.48 0.009 0.8391
→→→

119.17 0.008 0.834304
→→→

0.015049 119.86
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Table 5: ARS results

(1) (2) Non-corrected ARS

Year Month ε̂ 100p̂at std. error ε̂ 100p̂at std. error ε̂ARS std. error ARS

June 0.9806
→→→

101.98 0.009 0.8438
→→→

118.51 0.007 0.839163
→→→

0.014904 119.17

July 1.08
→→→

92.59 0.011 0.927
→→→

107.88 0.009 0.921213
→→→

0.017737 108.55

August 1.1
→→→

90.91 0.011 0.9471
→→→

105.58 0.009 0.941897
→→→

0.0178 106.17

September 1.132
→→→

88.34 0.011 0.9716
→→→

102.92 0.009 0.965314
→→→

0.018259 103.59

October 1.078
→→→

92.76 0.012 0.9261
→→→

107.98 0.011 0.919929
→→→

0.018657 108.70

November 1.129
→→→

88.57 0.012 0.9714
→→→

102.94 0.011 0.965466
→→→

0.019441 103.58

December 1.137
→→→

87.95 0.011 0.9769
→→→

102.36 0.010 0.970635
→→→

0.018556 103.03

2011 January 1.176
→→→

85.03 0.012 1.009
→→→

99.11 0.011 1.001612
→→→

0.020204 99.84

February 1.225
→→→

81.63 0.013 1.048
→→→

95.42 0.012 1.040308
→→→

0.021303 96.12

March 1.202
→→→

83.20 0.011 1.029
→→→

97.18 0.010 1.021011
→→→

0.019211 97.94

April 1.146
→→→

87.26 0.011 0.9836
→→→

101.67 0.010 0.976919
→→→

0.018606 102.36

May 1.072
→→→

93.28 0.010 0.9203
→→→

108.66 0.008 0.914571
→→→

0.01659 109.34

June 1.073
→→→

93.20 0.010 0.9197
→→→

108.73 0.008 0.913492
→→→

0.01662 109.47

July 1.069
→→→

93.55 0.010 0.9175
→→→

108.99 0.009 0.91198
→→→

0.016786 109.65

August 1.076
→→→

92.94 0.009 0.9232
→→→

108.32 0.008 0.917031
→→→

0.016264 109.05

September 1.153
→→→

86.73 0.011 0.985
→→→

101.52 0.009 0.976879
→→→

0.018484 102.37

October 1.153
→→→

86.73 0.012 0.9866
→→→

101.36 0.011 0.979996
→→→

0.019531 102.04

November 1.157
→→→

86.43 0.012 0.9899
→→→

101.02 0.011 0.982411
→→→

0.019667 101.79

December 1.125
→→→

88.89 0.011 0.9633
→→→

103.81 0.010 0.956045
→→→

0.018485 104.60

2012 January 1.228
→→→

81.43 0.014 1.047
→→→

95.51 0.012 1.038532
→→→

0.021421 96.29

February 1.244
→→→

80.39 0.012 1.063
→→→

94.07 0.011 1.054263
→→→

0.020641 94.85

March 1.164
→→→

85.91 0.010 0.9933
→→→

100.67 0.009 0.985554
→→→

0.017994 101.47

April 1.134
→→→

88.18 0.010 0.9639
→→→

103.75 0.009 0.955133
→→→

0.017371 104.70

May 1.079
→→→

92.68 0.009 0.9191
→→→

108.80 0.008 0.912024
→→→

0.015955 109.65

June 1.112
→→→

89.93 0.009 0.9472
→→→

105.57 0.007 0.939415
→→→

0.016199 106.45

July 1.07
→→→

93.46 0.009 0.9121
→→→

109.64 0.008 0.90427
→→→

0.016353 110.59

August 1.068
→→→

93.63 0.009 0.9084
→→→

110.08 0.008 0.89995
→→→

0.015914 111.12

September 1.099
→→→

90.99 0.010 0.9356
→→→

106.88 0.008 0.927241
→→→

0.016808 107.85

October 1.093
→→→

91.49 0.009 0.931
→→→

107.41 0.008 0.9226
→→→

0.016402 108.39

November 1.083
→→→

92.34 0.010 0.9193
→→→

108.78 0.008 0.910054
→→→

0.016791 109.88

December 1.064
→→→

93.98 0.009 0.9058
→→→

110.40 0.008 0.897436
→→→

0.016304 111.43

34



Table 5: ARS results

(1) (2) Non-corrected ARS

Year Month ε̂ 100p̂at std. error ε̂ 100p̂at std. error ε̂ARS std. error ARS

2013 January 1.177
→→→

84.96 0.012 0.9947
→→→

100.53 0.010 0.982539
→→→

0.019662 101.78

February 1.138
→→→

87.87 0.011 0.9659
→→→

103.53 0.010 0.955816
→→→

0.018741 104.62

March 1.002
→→→

99.80 0.009 0.8502
→→→

117.62 0.007 0.841817
→→→

0.015165 118.79

April 0.9842
→→→

101.60 0.007 0.833
→→→

120.05 0.006 0.824584
→→→

0.01412 121.27

May 0.9913
→→→

100.88 0.007 0.8386
→→→

119.25 0.006 0.830076
→→→

0.013975 120.47

June 0.9614
→→→

104.02 0.007 0.8133
→→→

122.96 0.006 0.805065
→→→

0.013405 124.21

July 0.9558
→→→

104.62 0.007 0.8089
→→→

123.62 0.006 0.800971
→→→

0.013295 124.85

August 0.9589
→→→

104.29 0.007 0.8094
→→→

123.55 0.006 0.800659
→→→

0.013443 124.90

September 0.9564
→→→

104.56 0.008 0.8056
→→→

124.13 0.007 0.796239
→→→

0.014006 125.59

October 0.9557
→→→

104.63 0.008 0.8052
→→→

124.19 0.007 0.795554
→→→

0.013909 125.70

November 0.9685
→→→

103.25 0.009 0.8143
→→→

122.80 0.008 0.803984
→→→

0.015127 124.38

December 1.018
→→→

98.23 0.013 0.8492
→→→

117.76 0.012 0.834528
→→→

0.018828 119.83

2014 January 1.184
→→→

84.46 0.027 0.9826
→→→

101.77 0.024 0.959822
→→→

0.033856 104.19

February 0.8342
→→→

119.88 0.014 0.6996
→→→

142.94 0.013 0.685599
→→→

0.021881 145.86

March 1.089
→→→

91.83 0.024 0.9097
→→→

109.93 0.021 0.891549
→→→

0.029007 112.16

April 0.8855
→→→

112.93 0.016 0.7383
→→→

135.45 0.014 0.723012
→→→

0.02277 138.31

May 1.025
→→→

97.56 0.023 0.8412
→→→

118.88 0.020 0.818726
→→→

0.027527 122.14

June 1.058
→→→

94.52 0.024 0.8714
→→→

114.76 0.021 0.849987
→→→

0.028257 117.65

July 1.01
→→→

99.01 0.024 0.824
→→→

121.36 0.021 0.800563
→→→

0.027459 124.91

August 0.9789
→→→

102.16 0.021 0.8077
→→→

123.81 0.018 0.787725
→→→

0.024905 126.95

September 0.9653
→→→

103.59 0.023 0.7915
→→→

126.34 0.020 0.770241
→→→

0.025793 129.83

October 0.9859
→→→

101.43 0.022 0.8078
→→→

123.79 0.019 0.785147
→→→

0.02653 127.36

November 0.9495
→→→

105.32 0.024 0.7796
→→→

128.27 0.021 0.758945
→→→

0.028133 131.76

December 0.9591
→→→

104.26 0.022 0.7818
→→→

127.91 0.019 0.759599
→→→

0.026701 131.65

Inverse Mills Ratio -8394
→→→

169.400 -1918
→→→

149.700

ϱω 88171.136 76160.000

ς -0.095 -0.025

Multiple R-Squared -28.76 -28.760

Adjusted R-Squared -28.7948 -23.773
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